

Beam shaping for enhanced laser polymer welding

Dr. Daniel Vogler

LASER World of PHOTONICS

Laser Polymer Welding – Recent results and future prospects for industrial applications in a European research project

Munich, Germany May 14, 2013

WHY BEAM SHAPING?

Easy modification of laser spot diameters

 Customer-specific contour shaping for one-shot welding

1 mm

2 mm

without / with beam shaping technique at different power levels

customer-specific beam shaping

TABLE OF CONTENT

- Motivation
- Diffractive Optical Element (DOE)
- Application of DOEs in laser polymer welding
 - Modification of spot diameters
 - Optimization of intensity profiles: M-shaped spot
 - Simultaneous welding
- Advantages and disadvantages of diffractive beam shaping

DIFFRACTIVE OPTICAL ELEMENT (DOE)

analogue to slit diffraction

incident planar wave

diffracted wave

IMPLEMENTATION OF DOEs IN OPTICAL SETUP

- Fixed implementation (e.g. in a spot optic)
- Exchangeable implementation (e.g. scanner optic)

with open slot for DOE

equipped with DOE

MODIFICATION OF SPOT DIAMETERS

Diffractive shaping of spot diameter without changing fiber, lenses and working distance.

Diffractive shaping of intensity profiles without changing laser, fiber cable and/or optic head.

m-shaped profile

measured intensity profiles of diffractives-haped laser spots

top-hat profile

M-shaped profile

measured profile

intensity profile

integrated intensity profile of laser spot

simulated heat distribution after laser absorption in polymer across

scan direction

PC (0.4% carbon black) power = 50W; v = 1m/s

heat affected zone in polymer

PP (0.5% carbon black)

top-hat profile

ymer Länge: 147 µm

M-shaped profile

[Simulation and microtones by ILT]

Intensity profile influences the heat distribution during weld process.

M-shaped intensity profile yields larger process window and ensures a defined edge of weld seams.

SIMULTANEOUS (ONE-SHOT) WELDING

- any 2D contours, preferably centrosymmetric
- short welding time
- no moving parts
- suited for mass production

polycarbonate foil samples

ADVANTAGES AND DISADVANTAGES OF DOES

Advantages

- any 2D contours
- no alignment required between DOE and laser beam ⇒ easy and quick exchange of DOE

Disadvantages

- efficiency
 - Two phase level DOE: 70 80 % efficiency, higher efficiency on multi-level DOE
- price high tooling costs, affordable

Characteristics of diffractive beam splitting technique

- DOE is designed for one wavelength (highest efficiency)
- size of the diffraction pattern depends on wavelength and focus lens

15 May 2013

PRESENTATION OF DOEs AT HALL 2, BOOTH 430

We are pleased to welcome you at BOOTH 430 in HALL 2

Thank you for your attention!

BACK UP SLIDES

15 May 2013

DIFFRACTIVE BEAM SPLITTING TECHNIQUE

DOE acts as a diffraction grating, i.e. as a beam-splitter imaging original laser spot in an array. Each of the imaged laser spots is weighted with a DOE-defined factor.

15 May 2013

ADJUSTAGBLE DOEs / SPATIAL LIGHT MODULATOR (LCoS)

Spatial light modulators for polymer laser welding

PROTOTYPE MACHINE WITH ADJUSTABLE DOES

WELD SAMPLES ACHIEVED BY LCoS COMBINED WITH SCANNER

Simultaneous (cup) and contour welding with different weld seams

Simultaneous welding of a single cow arranged in an 3x3 array realized by scanner head