

1st international Workshop for project partners
Laser welding - a versatile process for the high
performance production of polymeric components
15th March 2011, CRFI, Torino

Laser Sources for Laser Welding of Polymers – Technology of High Power Diode Lasers

LIMO Lissotschenko Mikrooptik GmbH J. Meinschien

OUTLINE

LIMO – Company Overview

Principles of High Power Diode Lasers

Technology of Manufacturing High Power Diode Lasers

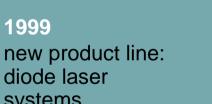
High Power Diode Lasers vs other Lasers

Applications of High Power Diode Lasers

High Power Diode Lasers for the POLYBRIGHT Project

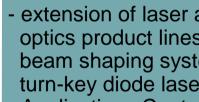
Innovationspreis® der deutschen Wirtschaft The World's First Innovation Award

LIMO Lissotschenko Mikrooptik GmbH


1998

1999

diode laser


systems

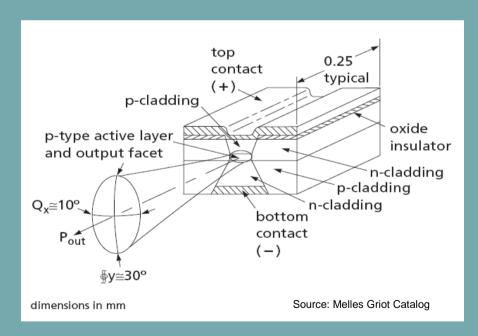
market leadership: refractive micro optics

2004

- extension of laser and optics product lines: beam shaping systems, turn-key diode laser systems
- Applications Center

1995 production launch at "Technologiezentrum Dortmund"

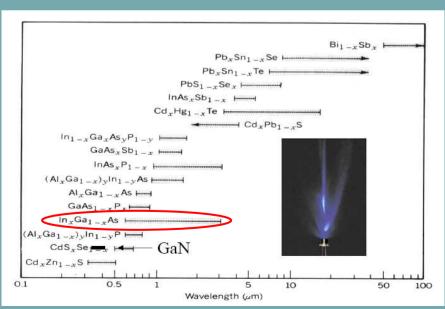
1992 founded near Paderborn 2001 facility expansion at Dortmund Wickede


TODAY

- 220 employees
- 10,000 m² co. owned floor space
- 2,000 m² clean room
- more than 300 patents
- profitable

Laser Diode Characteristics

- Semiconductor as active medium, electrically pumped
- Light is emitted "fast" in vertical direction (FA) and "slow" in the horizontal direction (SA) for high power edge emitter

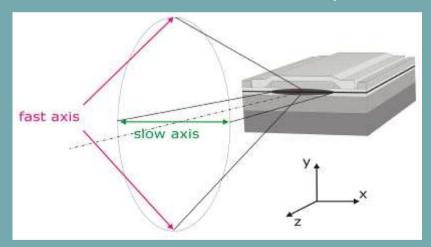


Typical values:

I=1μm, w=100μm, pitch=500μm

Divergence fast axis: 30°, Divergence slow axis: 10°

Laser diodes cover a wide spectral range


Beam Shaping for High Power Diode Laser

refractive micro lens (arrays)

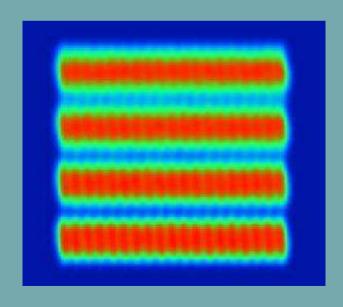
→ high efficiency, high transmission

diffraction limited beam shaping for optimum brightness

→ conservation of beam parameter product

crossed
acylindrical lenses
for
asymmetric beam
of single emitter

lens arrays for arrays of emitters



Power Scaling for High Power Diode Laser

- Geometric Arrangement of Emitters
 - Singe Emitters, Multi-Single-Emitters
 - Bars, Stacks
- Geometric Arrangement of Beams
- Polarization Coupling, Wavelength Coupling

Configurations of High Power Diode Lasers

	Emitter Brightness	Overall power per device	Reliability	Relative size	Power per linear length of device	Costs (\$/W)
Single	++	-	++	0	-	-
Emitter						
Bars						
passively	О	0	+(+)	-	o	0+
cooled						
Bars MCC	0	+	-	+	+	+
standard						
Bars MCC	+	++	+	++	++	_
improved	Т	TT	⁻⊤	TT		-

No all over superior, especially if costs and size are critical

First choice varies with applications and boundary conditions

Manufacturing of High Power Diode Laser

highly automated production steps enable

- > large number of units
- > high and uniform quality
- > competitive cost structure

Manufacturing of Laser Diode Modules at LIMO

Proprietary process for producing refractive micro optics

Accurate alignment and mounting of beam shaping elements (lenses, mirrors) for high efficient and high brightness laser beams (fibre coupled or free beam)

High Power Diode Lasers vs other Lasers

No brightness converter

- + cost
- + electro-optical efficiency
- brightness and beam quality

Directly eletrically pumped

+ easy modulation

Relatively simple and rugged resonator design (Fabry-Pérot)

- + no mirror alignment
- low coherence
- large spectral width

Advantages of High Power Diode Lasers

High electro-optical efficiency up to 60% on emitter level 25-50% on system level (wall plug efficiency)

Wide range of available wavelengths

UV – VIS – IR – NIR

e.g. 405 nm, 640 nm, 790-1060 nm, 1450-1550 nm, 1800-2000 nm

Feasible operation modes by current control Pulsed (ps ... ms) – modulated – cw

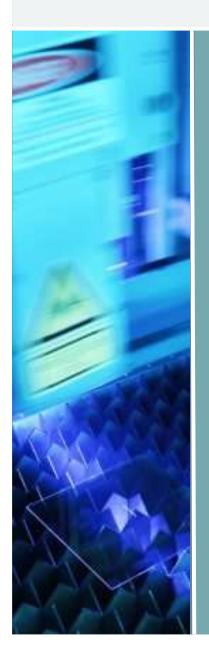
Application matched beam shapes fibre coupled, collimated, homogenous lines (1D) or fields (2D)

Easy handling, commercially attractive maintenance free lifetime can exceed 20.000 hrs and more competetive cost structure

Limitations of High Power Diode Lasers

Limited Brightness, Moderate Beam Parameter Product multi mode beam (M²: 1 ... 10.000)

→ limited spot size and/or short working distance


!!! however: no brightness converter is required !!!

Low Peak Power for Short Pulses not (yet) feasible for ablation processes

Low Coherence (compared to other lasers)

Large Spectral Width (compared to other lasers) 0.1 nm ... 4 nm (... 300 nm)

Prospects and Future Trends of High Power Diode Lasers

Increase of Power per Emitter and/or Bar e.g. for passively cooled laser diode bars, 980 nm year 2000: ~20 W year 2011: ~120 W

Increase in Brightness

e.g. for 100 µm fibre NA =0.12, single wavelength year 2000: ~ 2 W year 2011: ~ 100 W

Extended Wavelength Range

e.g. 405 nm, 25 W out of 1.000 µm fibre (LIMO, year 2011)

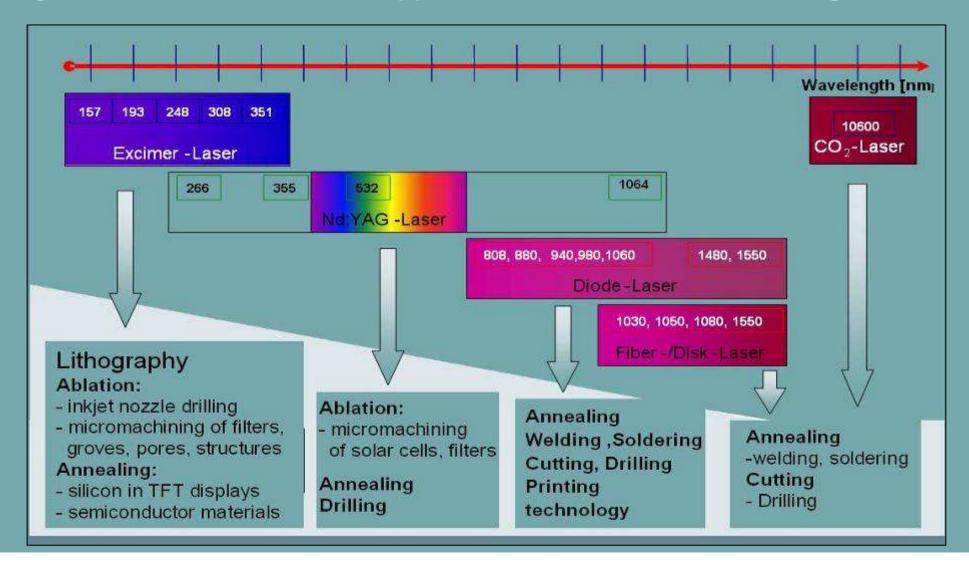
e.g. 1550 nm from telecom application to material processing

Decrease of Costs (per Watt)
through scale of economy
target is to process MW power per year

Some Current Targets for High Power Diode Lasers

Metall Sheet Cutting with Diode Lasers
2.5 to 4 kW with beam parameter product of 10 - 20 mm mrad
(several wavelength 800nm to 1100 nm)

Aircooled Diode Lasers (no water, no TEC) > 100 W (cw) at room temperature ambient

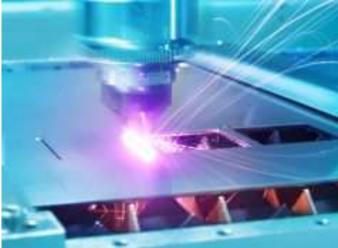

Improved Spectral Properties
stabilized centre wavelength, spectral width < 0.1 nm
for pumping or spectroscopy

Large Scale Surface Modifications
up to several meters line length
10 ... 200 kW (cw)

Production Technology, Decrease of Costs
< 20 USD per Watt for laser system incl. periphery

High Power Laser Sources & Applications in Materials Processing

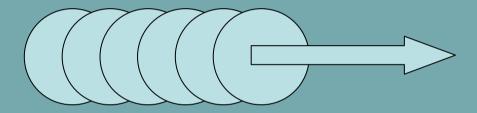
Huge Range of Applications of High Power Diode Lasers

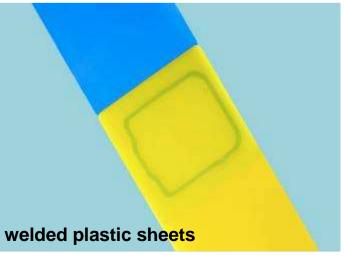

- > Pumping of Solid State Lasers (incl. Fibre Laser)
- > Illumination for Vision Inspection
- > Printing CtP-Technology
- Medical

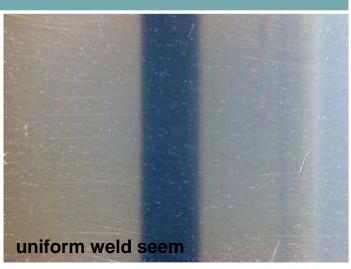
Soft Tissue Treatment Hair Removal

Metall Processing

Micro - Macro: Marking, Cutting, Welding



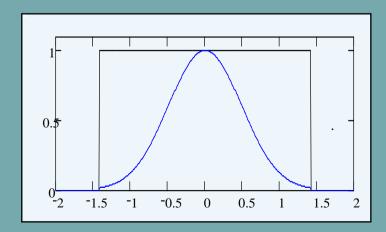

Plastics Processing with High Power Diode Lasers

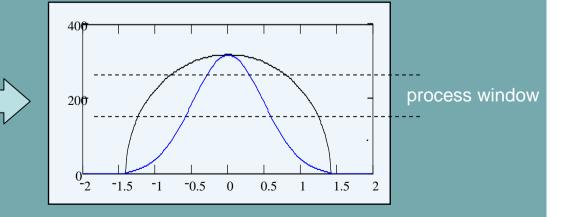

Scanning of circular spot with typically rotational symmetric intensity distribution

Target: smooth and uniform weld seem with tolerant parameter set (width, penetration depth, strength, visual appearance etc.)

Plastics Processing with High Power Diode Lasers

Oberservation:

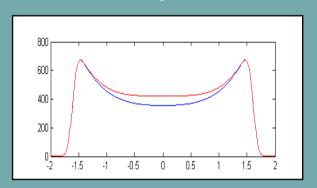

- small range of parameter sets for satisfying results
 - weld seem with deterioration in the centre of the seem

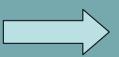

Background:

• effective interaction (heat impact) exceed threshold for damaging in the center of the seem

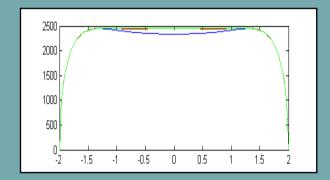
Radiale Intensity Distribution (Top Hat, Gaussian)

Effective Interaction/Heat Impact (Parabolic, Gaussian)



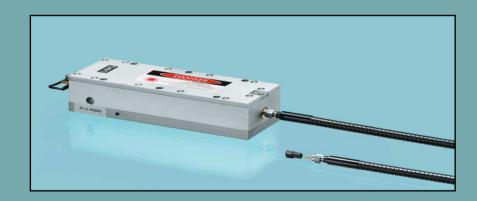

Plastics Processing with High Power Diode Lasers

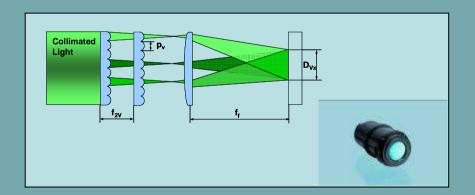
Solution:


Ideally M-shaped intensity profile (near field on application surface, radial symmetric) for processing low heat conducting materials

Radiale Intensity Distribution

Effective Interaction/Heat Impact


Approaches

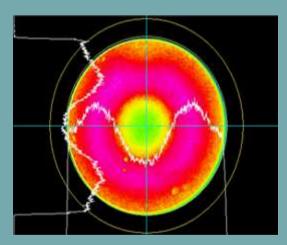

- 1) beam shaping with refractive optics (this presentation)
- 2) diffractive optical elements (DOE)
- 3) axicon for beam manipulation
- 4) pattern by masks

Generation of M-Shaped Intensity Distribution

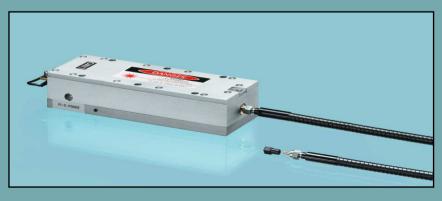
- A) Near field at Fiber tip
 with M-shaped intensity distrubution *
 → Imaging of Fiber tip by
 refocussing unit or scanner etc.
- B) Beam Mixing *
 (Radial lens array, field lens)
 → M-Module as refocussing unit or integrated in scanner

Advantages of refractive optics

- high transmission (potential > 99%)
- high damage threshold
- versatile use in application (imaging, scanner etc.)
- * approaches are patent pending: A) 2010, A. Mikhailov
- B) 2010, Y. Mikliaev et al,

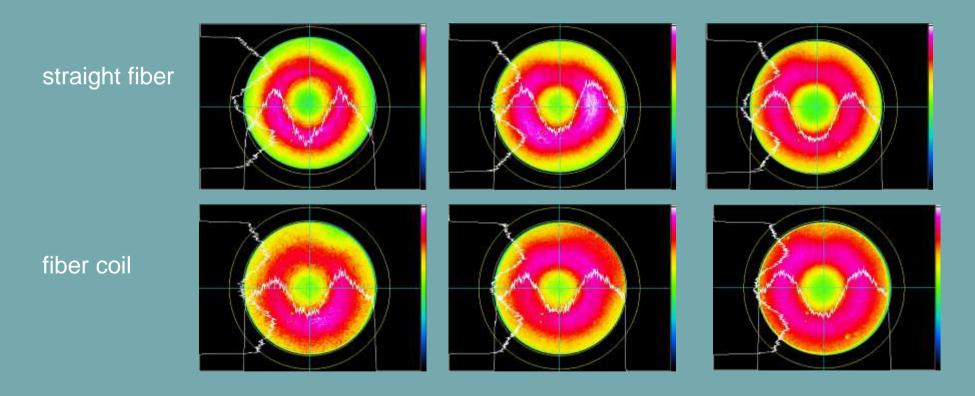


Generation of M-Shaped Intensity Distribution


Near Field at Fiber Output

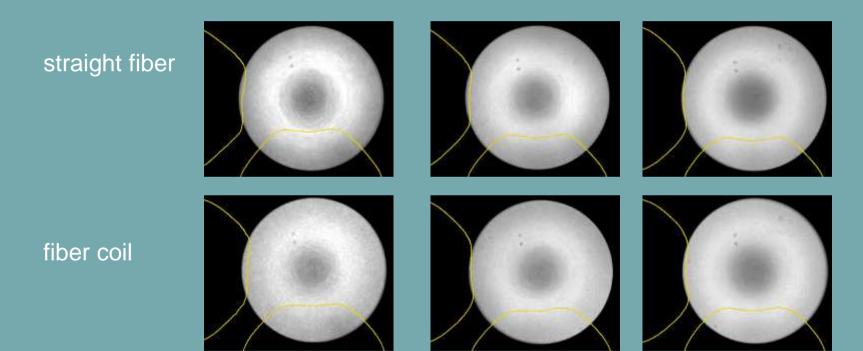
Standard Configuration (LIMO) Modified Configuration with M-Shape Optic

after 1.5 m length of fiber


bi shaped lens aperture: 1mm

60 W 980 nm 400 μm NA: 0.22

Generation of M-Shaped Intensity Distribution



Fiber Length (1-10 m)

Handling of fiber without impact on m-shape

Generation of M-Shaped Intensity Distribution of Fibre Coupled Diode Laser

yellow curves are integrated intensities

Fiber Length (1-10 m)

Handling of fiber without impact on effective interaction / heat impact

Summary

High Power Diode Lasers are:

- high efficent light sources
- compact, robust and easy to handle
- emitting in many wavelenght (UV VIS IR)
- available in wide power range (up to multiple kW)
- applicable for cw, modulated and pulsed operation (ps ... s)
- available in application matched beam form
 - fibre coupled (100µm ... 1.000 µm fibre diameter)
 - collimated, spots, line (1D), fields (2D)
- versatile for many applications

With Potentially High Impact for Polybright Project

- high absorption of polymer (low optical power required)
- processing of visual transparent material

1st international Workshop for project partners

Laser welding - a versatile process for the high
performance production of polymeric components

15th March 2011, CRFI, Torino

Thank you for your attention!

Dr. Jens Meinschien VP Research & Development E-mail: jens@meinschien.de

Phone: +49-231-22241-130